Big Ideas in Number Resource Information

Big Ideas in Number Focus Area: Partitioning

Name of Game or Activity: Fraction & Decimal Order

Instructions:

- 1. Students must know that dividing the numerator by the denominator gives a decimal.
- 2. Present students with one of the 3 'gameboards' and ask them to place the decimals/fractions in order.

Resources:

- Whiteboard & Marker
- Resource Sheets (to be displayed to the student OR can be cut out individually for a hands-on experience).

BliN Micro Content

Objects, quantities and collections can be shared to create equal parts	
There is a relationship between the number of parts and the size and name	
of the parts and the number of parts increases as the size or share	
decreases	
Objects, quantities and collections can be repeatedly halved and doubled	
e.g. use successive splits to show that one half is equivalent to 2 parts in	
4, 4 parts in 8 etc.	
An object, quantity or collection can be partitioned into a number of equal	
portions to show unit fractions so that say one third is more than one	
fourth etc.	
The relative magnitude of a fraction is dependent on the relationship	
between the numerator (how many parts) and the denominator (total parts)	
Fractions are renamed as equivalents where the total number of parts	
(denominator) and required number of parts (numerator) are increased by	
the same factor	
Fractions with unlike denominators can be compared and ordered	
Common fractions and decimal fractions can be compared, ordered and	
renamed in conceptual ways	Х

Big Ideas in Number Resource Information

Construct of fraction as division can be used to produce equal parts (equipartitioning) Fractions are used to describe quotients and operators	
Fractions are used to describe part-whole relations	
Fractions are used to describe simple ratios	
Percentages, fractions and decimals express the relationship between to quantities	
Percentages are special part : whole ratios based on 100	
Any given percentage can be used as a ratio to generate an infinite number of equivalent fractions (e.g. $50\% = \frac{1}{2} \frac{2}{4} \frac{3}{6}$ etc.)	
Multiplicative arrays can be used to represent fractions, decimals and percentages	
Benchmark fractions, decimals and percentages which are the equivalents of one another, can be used to estimate and to solve problems	

 $\begin{array}{c|c}
\hline
2\\
\hline
5\\
\hline
\end{array}$ $\begin{array}{c|c}
0.35\\
\hline
\end{array}$ $\begin{array}{c|c}
0.55\\
\hline
\end{array}$ $\begin{array}{c|c}
3\\
\hline
4\\
\end{array}$ $\begin{array}{c|c}
0.8\\
\hline
\end{array}$

Write down these fractions in order from smallest to largest.

FRACTION ORDER

Write down these fractions in order from smallest to largest.

FRACTION ORDER

Write down these fractions in order from smallest to largest.

